Elektromobilität TU München entwickelt mit „aCar“ Elektroauto für Afrika

Autor / Redakteur: Stefanie Reiffert / Sariana Kunze

Die Technische Universität München möchte gemeinsam mit Kooperationspartner mit einem Elektroauto für Afrika Entwicklungshilfe leisten. Vier Jahre langen haben die Wissenschaftler an dem Projekt „aCar“ gearbeitet und zuletzt einen Prototypen in Ghana getestet. Auf der internationalen Automobil-Ausstellung (IAA) 2017 wird das Elektroauto der Öffentlichkeit vorgestellt.

Firmen zum Thema

Die TU München hat ein Elektroauto für Afrika entwickelt. In Ghana wurde der erste Prototyp aCar unter realen Bedingungen getestet.
Die TU München hat ein Elektroauto für Afrika entwickelt. In Ghana wurde der erste Prototyp aCar unter realen Bedingungen getestet.
(Bild: TUM)

Mobilität gehört zu unserem täglichen Leben. Wir transportieren große Lasten, pendeln zur Arbeit und fliegen im Urlaub in ein fernes Land. Für viele Menschen in Afrika ist der Zugang zu Fahrzeugen dagegen nicht selbstverständlich. Für Bauern, die weit von den urbanen Zentren entfernt leben, bedeutet das, dass sie keinen direkten Zugang zu medizinischer Versorgung, Bildung und zum politischen Geschehen haben. Um ihren Lebensunterhalt bestreiten zu können, sind sie auf Transportunternehmen angewiesen, die ihre Erzeugnisse zum Verkauf in die nächste Stadt fahren. Viele Menschen verlassen daher die ländliche Umgebung, weil sie in der Stadt auf bessere Lebensbedingungen hoffen.

Bildergalerie
Bildergalerie mit 17 Bildern

„Wir haben mit dem aCar ein Mobilitätskonzept entwickelt, das diese Probleme lösen kann“, erklärt Prof. Markus Lienkamp, Leiter des Lehrstuhls für Fahrzeugtechnik an der TUM. „Es handelt sich um ein Fahrzeug, das sich die Menschen dort finanziell leisten können, es ist geländegängig und kann große Lasten transportieren. Der modulare Aufbau erlaubt außerdem noch weitere Nutzungen wie z.B. Wasseraufbereitung.“ Gemeinsam mit Bayern Innovativ initiierte die TUM 2013 das Projekt „aCar mobility - Ländliche Mobilität in Entwicklungsländern“, um ein Fahrzeug zu konzipieren, das genau auf die Bedürfnisse der ländlichen Bevölkerung in den afrikanischen Ländern südlich der Sahara zugeschnitten ist. Die Förderung erfolgte seit 2015 über die Bayerische Forschungsstiftung.

Elektroauto für afrikanische Bedingungen

Für die Straßen in Afrika, die größtenteils nicht asphaltiert sind, ist Allradantrieb Pflicht. Das Team entschied sich außerdem für einen elektrischen Antriebsstrang. „Ein Elektroantrieb ist nicht nur umweltfreundlicher, sondern auch technisch die bessere Lösung, da er wartungsarm ist und sein volles Drehmoment direkt beim Anfahren entfalten kann“, erklärt Martin Šoltés, der gemeinsam mit Sascha Koberstaedt das Projekt am Lehrstuhl für Fahrzeugtechnik leitet. Der Hauptzweck des Fahrzeuges ist der Transport von Personen und Gütern, wobei es eine Gesamtlast von einer Tonne transportieren kann. Die Batterie bietet zusätzliche Anwendungsmöglichkeiten wie z.B. als Energiequelle oder zur Nutzung leistungsstarker Verbraucher, wie etwa einer Seilwinde. Hierfür wurden bereits unterschiedliche Aufbauten für die Ladefläche konzipiert, die modular verwendet werden können. Mithilfe weiterer Module kann sich das Auto unter anderem in eine mobile Arztpraxis oder eine Wasseraufbereitungsstation verwandeln.

Per Steckdose in sieben Stunden geladen

Die Batteriekapazität von 20 kWh ermöglicht eine elektrische Reichweite von 80 km. Sie kann an einer normalen Haushaltssteckdose mit 220 Volt innerhalb von sieben Stunden vollständig geladen werden. Solarmodule, die auf dem Dach des Fahrzeugs angebracht sind, liefern ebenfalls Energie für die Batterie und erhöhen die Reichweite. Solarplanen, die optional erhältlich sind, können noch deutlich mehr Solarenergie zum Laden der Batterie erzeugen. „Hightech-Komponenten wie die Batterie und die Elektromotoren werden wir am Anfang natürlich importieren müssen“, sagt Martin Šoltés. Jedoch sollen möglichst viele Komponenten des aCar vor Ort gefertigt werden, um die lokale Wirtschaft zu stärken. „Gussknoten und eine einfache geschraubte Bauweise ermöglichen eine einfache Produktion mit sehr niedrigen Investitionskosten“, erklärt Prof. Wolfram Volk, Leiter des Lehrstuhls für Umformtechnik und Gießereiwesen. Der Preis für das Basis-Fahrzeug in Afrika soll langfristig unter 10.000 Euro liegen.

Erster Prototyp: Elektroauto in Ghana getestet

Die Wissenschaftlerinnen und Wissenschaftler stellten den ersten Prototyp im Mai 2016 fertig und erprobten ihn zunächst in Deutschland. Um herauszufinden, ob das Auto auch vor Ort allen Ansprüchen genügt, verschifften sie das Fahrzeug nach Ghana, wo sie im Juli 2017 die Technik und das Konzept unter lokalen Bedingungen prüften. Das aCar bestand die Tests. „Es war sechs Wochen im Container unterwegs, wir haben es ausgeladen, eingeschaltet und es hat bis zum letzten Erprobungstag einwandfrei funktioniert“, berichtet Sascha Koberstaedt. Das Team ließ auch die Menschen vor Ort mit dem Auto fahren. Ein weiterer wichtiger Punkt war, den Einfluss der höheren Temperaturen und der Luftfeuchtigkeit auf die Elektrik zu prüfen. „Wir haben sehr viele Daten gesammelt, die noch ausgewertet werden müssen“, sagt Koberstaedt. „Aber was man bereits sagen kann, ist, dass alle Anforderungen erfüllt und unsere Erwartungen sogar übertroffen wurden.“

Modellfabrik in Deutschland: Technische Abläufe beherrschen

Damit die Idee vom aCar keine Idee bleibt, sondern das aCar wirklich in Serie geht, haben Sascha Koberstaedt und Martin Šoltés die Firma Evum Motors GmbH gegründet. In einer Modellfabrik sollen die ersten Fahrzeuge in Europa gefertigt werden. „Bevor das Auto in Afrika produziert werden kann, müssen wir zunächst die technischen Abläufe in den Griff bekommen. Dann können wir Menschen aus Afrika hier schulen, die wiederum ihr Wissen vor Ort weitergeben“, sagt Koberstaedt.

Technische Daten von aCar:

Leistung: 2 x 8 Kilowatt

Elektrische Reichweite: 80 km

Zulassungsklasse L7e

Spannungslevel: 48 Volt

Batteriekapazität: 20 kWh

Höchstgeschwindigkeit: 60 km/h

Leergewicht 800 kg

Zuladung 1.000 kg

Maße: Länge 3,7 m; Breite 1,5 m; Höhe 2,1 m

Anzahl der Sitzplätze: Zwei

* Stefanie Reiffert, TU München

(ID:44869317)