Forschende des Max-Planck-Instituts für Intelligente Systeme und der ETH Zürich haben ein Roboterbein mit künstlichen Muskeln entwickelt. Inspiriert von Lebewesen, springt es wendig und energieeffizient über verschiedene Terrains.
Das Roboterbein funktioniert nach dem gleichen Prinzip wie menschliche Beine beim Springen.
(Bild: MPI für Intelligente Systeme/Wolfram Scheible)
Roboter auf der ganzen Welt haben eines gemeinsam: Sie werden von Motoren angetrieben, eine Technologie, die schon 200 Jahre alt ist. Selbst Laufroboter treiben ihre Arme und Beine nicht mit Muskeln an, wie wir es von Menschen und Tieren kennen, sondern mit Motoren. Deshalb fehlt ihnen teilweise die Beweglichkeit und Anpassungsfähigkeit von Lebewesen.
Forschende der ETH Zürich und des Max-Planck-Instituts für Intelligente Systeme (MPI-IS) haben nun ein neues mit Muskeln angetriebenes Roboterbein entwickelt. Dieses ist nicht nur energieeffizienter als ein herkömmliches, sondern kann auch hohe Sprünge und schnelle Bewegungen ausführen, sowie Hindernisse erkennen und darauf reagieren – und das alles ohne komplexe Sensoren. Die im Rahmen der Forschungspartnerschaft namens Max Planck ETH Center for Learning Systems, kurz CLS, wurde von Robert Katzschmann von der ETH Zürich und Christoph Keplinger vom MPI-IS geleitet. Ihre Doktoranden Thomas Buchner und Toshihiko Fukushima sind die Co-Erstautoren der Publikation des Teams über ein von Tieren inspiriertes muskuloskelettales Roboterbein in der Fachzeitschrift Nature Communications (s. DOI).
Wie bei Mensch und Tier sorgen auch beim Roboterbein ein Streck- und ein Beugemuskel dafür, dass Bewegungen in beide Richtungen möglich sind. Diese elektrohydraulischen Aktuatoren, die die Forscher HASELs nennen, sind über Sehnen am Skelett befestigt.
Sobald wir Spannung an die Elektroden anlegen, ziehen sie sich aufgrund statischer Elektrizität gegenseitig an. Wenn ich einen Luftballon an meinem Kopf reibe, bleiben meine Haare aufgrund der gleichen statischen Elektrizität am Ballon haften.
Thomas Buchner
Die Aktuatoren sind mit Öl gefüllte Kunststoffbeutel, ähnlich den Plastikbeuteln, mit denen man Eiswürfel herstellen kann. Etwa die Hälfte des Beutels ist beidseitig mit einer schwarzen Elektrode, also einem leitfähigen Material, beschichtet. Buchner erklärt: „Sobald wir Spannung an die Elektroden anlegen, ziehen sie sich aufgrund statischer Elektrizität gegenseitig an. Wenn ich einen Luftballon an meinem Kopf reibe, bleiben meine Haare aufgrund der gleichen statischen Elektrizität am Ballon haften.“ Wenn man die Spannung erhöht, ziehen sich die Elektroden näher zusammen und schieben das Öl im Beutel auf eine Seite, wodurch der Beutel insgesamt kürzer wird.
Paare dieser Aktuatoren, die an einem Skelett befestigt sind, führen zu den gleichen paarweisen Muskelbewegungen wie bei Lebewesen: Wenn sich ein Muskel verkürzt, verlängert sich sein Gegenstück. Über einen Computercode, der mit Hochspannungsverstärkern kommuniziert, steuern die Forschenden, welche Aktuatoren sich zusammenziehen und welche sich verlängern sollen.
Effizienter als Elektromotoren
Die Forschenden verglichen die Energieeffizienz ihres Roboterbeins mit der eines herkömmlichen Roboterbeins, das von einem Elektromotor angetriebenen wird. Sie untersuchten dazu unter anderem, wie viel Energie unnötig in Wärme umgewandelt wird. „Auf dem Infrarotbild sieht man schnell, dass das Motorbein viel mehr Energie verbraucht, wenn es zum Beispiel in einer gebeugten Position gehalten werden muss“, erklärt Buchner. Im Gegensatz dazu bleibe die Temperatur im elektrohydraulisch angetriebenen Bein gleich. Das liege daran, dass der künstliche Muskel elektrostatisch sei. „Das ist wie beim Beispiel mit dem Ballon und den Haaren, wo die Haare auch ziemlich lange am Ballon haften“, ergänzt Buchner. „Elektrische Motoren brauchen eine Hitzeregulierung, wodurch zusätzliche Kühlaggregate oder Ventilatoren für das Ableiten der Wärme in die Luft notwendig sind. Unser System benötigt solche Komponenten nicht“, fügt Fukushima hinzu.
Agile Fortbewegung über unebenes Terrain
Das Roboterbein kann sein eigenes Gewicht explosionsartig anheben und damit springen. Die Forschenden konnten auch zeigen, dass das Roboterbein über eine hohe Anpassungsfähigkeit verfügt, was für das Soft Robotik Forschungsgebiet besonders wichtig ist. Nur wenn der Bewegungsapparat genügend Elastizität aufweist, kann er sich agil an das jeweilige Terrain anpassen. „Das ist bei Lebewesen nicht anders. Wenn wir zum Beispiel unsere Knie nicht beugen können, haben wir große Schwierigkeiten, auf einer unebenen Oberfläche zu gehen“, sagt Katzschmann. „Man denke nur an die Stufe vom Gehweg auf die Strasse.“
Die Anpassungsfähigkeit an das Terrain ist ein zentraler Aspekt. Wenn eine Person in die Luft springt und landet, muss sie sich nicht erst überlegen, ob sie ihre Knie im 90- oder im 70-Grad-Winkel beugen soll. Dasselbe Prinzip gilt für das muskuloskelettale Roboterbein: Ist die Umgebung weich, erreicht das Roboterbein einen anderen Gelenkwinkel als bei hartem Untergrund.
Toshihiko Fukushima
Während ein Sensor dem Elektromotor ständig mitteilen muss, in welchem Winkel sich das Roboterbein befindet, passt sich der künstliche Muskel adaptiv durch die Interaktion mit der Umgebung an. Als Antrieb erhält er konstant die gleichen zwei Eingangssignale:
eines für die Beugung und
eines für die Streckung des Gelenks
Fukushima erklärt: „Die Anpassungsfähigkeit an das Terrain ist ein zentraler Aspekt. Wenn eine Person in die Luft springt und landet, muss sie sich nicht erst überlegen, ob sie ihre Knie im 90- oder im 70-Grad-Winkel beugen soll. Dasselbe Prinzip gilt für das muskuloskelettale Roboterbein: Ist die Umgebung weich, erreicht das Roboterbein einen anderen Gelenkwinkel als bei hartem Untergrund.“
Wenn wir die Technologie des Roboterbeines zu einem vierbeinigen Roboter oder einem humanoiden Roboter mit zwei Beinen kombinieren, könnten wir es eines Tages, sobald es batteriebetrieben ist, auch als ein Rettungsroboter einsetzen.
Robert Katzschmann
Echte Laufroboter mit künstlichen Muskeln
Das Forschungsfeld der elektrohydraulischen Aktuatoren ist noch jung und existiert erst seit rund sechs Jahren. Es werde wahrscheinlich nicht in schweren Maschinen auf Baustellen zum Einsatz kommen, sie aber spezifische Vorteile gegenüber Standard-Elektromotoren bieten, insbesondere bei Anwendungen mit Roboterhänden, wo die Bewegung sehr individuell und adaptiv sein muss - je nachdem, ob es sich zum Beispiel um einen Ball, ein Ei oder eine Tomate handelt, ergänzt Katzschmann. „Das aktuelle System ist im Vergleich zu Laufrobotern mit Elektromotoren noch limitiert. Derzeit ist das Bein an einer Stange befestigt, hüpft im Kreis und kann sich noch nicht frei bewegen.“ Zukünftige Arbeiten sollen diese Einschränkungen überwinden, so dass echte Laufroboter mit künstlichen Muskeln entwickelt werden können. Er führt weiter aus: „Wenn wir die Technologie des Roboterbeines zu einem vierbeinigen Roboter oder einem humanoiden Roboter mit zwei Beinen kombinieren, könnten wir es eines Tages, sobald es batteriebetrieben ist, auch als ein Rettungsroboter einsetzen.“
Stand: 08.12.2025
Es ist für uns eine Selbstverständlichkeit, dass wir verantwortungsvoll mit Ihren personenbezogenen Daten umgehen. Sofern wir personenbezogene Daten von Ihnen erheben, verarbeiten wir diese unter Beachtung der geltenden Datenschutzvorschriften. Detaillierte Informationen finden Sie in unserer Datenschutzerklärung.
Einwilligung in die Verwendung von Daten zu Werbezwecken
Ich bin damit einverstanden, dass die Vogel Communications Group GmbH & Co. KG, Max-Planckstr. 7-9, 97082 Würzburg einschließlich aller mit ihr im Sinne der §§ 15 ff. AktG verbundenen Unternehmen (im weiteren: Vogel Communications Group) meine E-Mail-Adresse für die Zusendung von redaktionellen Newslettern nutzt. Auflistungen der jeweils zugehörigen Unternehmen können hier abgerufen werden.
Der Newsletterinhalt erstreckt sich dabei auf Produkte und Dienstleistungen aller zuvor genannten Unternehmen, darunter beispielsweise Fachzeitschriften und Fachbücher, Veranstaltungen und Messen sowie veranstaltungsbezogene Produkte und Dienstleistungen, Print- und Digital-Mediaangebote und Services wie weitere (redaktionelle) Newsletter, Gewinnspiele, Lead-Kampagnen, Marktforschung im Online- und Offline-Bereich, fachspezifische Webportale und E-Learning-Angebote. Wenn auch meine persönliche Telefonnummer erhoben wurde, darf diese für die Unterbreitung von Angeboten der vorgenannten Produkte und Dienstleistungen der vorgenannten Unternehmen und Marktforschung genutzt werden.
Meine Einwilligung umfasst zudem die Verarbeitung meiner E-Mail-Adresse und Telefonnummer für den Datenabgleich zu Marketingzwecken mit ausgewählten Werbepartnern wie z.B. LinkedIN, Google und Meta. Hierfür darf die Vogel Communications Group die genannten Daten gehasht an Werbepartner übermitteln, die diese Daten dann nutzen, um feststellen zu können, ob ich ebenfalls Mitglied auf den besagten Werbepartnerportalen bin. Die Vogel Communications Group nutzt diese Funktion zu Zwecken des Retargeting (Upselling, Crossselling und Kundenbindung), der Generierung von sog. Lookalike Audiences zur Neukundengewinnung und als Ausschlussgrundlage für laufende Werbekampagnen. Weitere Informationen kann ich dem Abschnitt „Datenabgleich zu Marketingzwecken“ in der Datenschutzerklärung entnehmen.
Falls ich im Internet auf Portalen der Vogel Communications Group einschließlich deren mit ihr im Sinne der §§ 15 ff. AktG verbundenen Unternehmen geschützte Inhalte abrufe, muss ich mich mit weiteren Daten für den Zugang zu diesen Inhalten registrieren. Im Gegenzug für diesen gebührenlosen Zugang zu redaktionellen Inhalten dürfen meine Daten im Sinne dieser Einwilligung für die hier genannten Zwecke verwendet werden. Dies gilt nicht für den Datenabgleich zu Marketingzwecken.
Recht auf Widerruf
Mir ist bewusst, dass ich diese Einwilligung jederzeit für die Zukunft widerrufen kann. Durch meinen Widerruf wird die Rechtmäßigkeit der aufgrund meiner Einwilligung bis zum Widerruf erfolgten Verarbeitung nicht berührt. Um meinen Widerruf zu erklären, kann ich als eine Möglichkeit das unter https://contact.vogel.de abrufbare Kontaktformular nutzen. Sofern ich einzelne von mir abonnierte Newsletter nicht mehr erhalten möchte, kann ich darüber hinaus auch den am Ende eines Newsletters eingebundenen Abmeldelink anklicken. Weitere Informationen zu meinem Widerrufsrecht und dessen Ausübung sowie zu den Folgen meines Widerrufs finde ich in der Datenschutzerklärung, Abschnitt Redaktionelle Newsletter.