Batterietechnologie Warum Lithium-Schwefel-Batterien so schnell altern

Redakteur: Katharina Juschkat

Lithium-Schwefel-Batterien könnten ein guter Ersatz für Li-Ion-Akkus sein – aber bisher kann man ihr volles Potential noch nicht nutzen. Die PTB untersuchte jetzt, warum die Batterien so schnell altern.

Firmen zum Thema

Für die Energiewende braucht es leistungsstarke Akkus – die Lithium-Schwefel-Batterie verfügt über zukunftsträchtige Eigenschaften.
Für die Energiewende braucht es leistungsstarke Akkus – die Lithium-Schwefel-Batterie verfügt über zukunftsträchtige Eigenschaften.
(Bild: ©pickup - stock.adobe.com)

Lithium-Schwefel-Batterien könnten ein attraktiver Ersatz für die sonst überall genutzten Lithium-Ionen-Batterien sein – doch dieser Typ Batterie altert sehr schnell und erreicht bisher nicht seine maximal mögliche Kapazität und Lebensdauer. Warum das so ist, wurde jetzt in der Physikalisch-Technischen Bundesanstalt (PTB) untersucht. Die Ergebnisse sind im Journal of Materials Chemistry A veröffentlicht.

Warum Lithium-Ionen-Batterien nicht mehr ausreichen

Batterien spielen eine Schlüsselrolle im Rahmen der Energiewende, z. B. als stationäre Zwischenspeicher für Energie aus erneuerbaren Energiequellen oder in Elektroautos zur Verdrängung fossiler Energieträger. Für diese Anwendungsgebiete kommen die derzeitigen Lithium-Ionen-Batterien hinsichtlich Kapazität und Lebensdauer an ihre Grenzen. Außerdem werden oft teure und toxische Rohstoffe eingesetzt, die teilweise unter fragwürdigen Bedingungen abgebaut werden.

Deshalb werden alternative, umweltfreundliche Batterietypen mit höherer Kapazität und längerer Lebensdauer benötigt, zu denen potenziell die Lithium-Schwefel-Batterie gehört. Eine solche Batteriezelle mit Lithium als Minuspol(Anoden-)Material und Schwefel- als Pluspol(Kathoden)-Material hat mehrere Vorteile: Schwefel ist preiswert, umweltfreundlich und reichlich vorhanden. Und die theoretische Energiedichte einer solchen Zelle liegt aufgrund der leichten Elemente bei bis zu 2500 Wh/kg, was signifikant höher ist als bei Lithium-Ionen-Batterien.

Das Problem: Bisher konnte nur rund ein Viertel der theoretisch erreichbaren Energiedichte realisiert werden, und die Batterien dieser Art altern zu schnell, sodass die von der Industrie geforderten mindestens 1000 Ladezyklen derzeit noch nicht erreicht werden können.

Warum die Kapazität so schnell sinkt

Auf der Suche nach Gründen für den schnellen Rückgang der Kapazität standen die Polysulfide im Fokus. Polysulfide sind kettenförmige Moleküle, die aus Lithium und Schwefel bestehen, also genau jenen Elementen, die für die Energiespeicherung in diesem Batterietyp zuständig sind. Wenn sich die Polysulfide im Elektrolyten lösen, so geht der Anteil Lithium und Schwefel für die Energiespeicherung verloren, und folglich sinkt die Kapazität.

Aufbau der Lithium-Schwefel-Batteriezellen, mit denen die gelösten Polysulfide am Pluspol (Kathode, links) und am Minuspol (Anode, rechts) untersucht wurden: Das Loch im Zellgehäuse gewährleistet die Transmission der Strahlung in und aus der Zelle. Das Loch im Plus- und Minuspol sorgt dafür, dass nur die im Elektrolyten gelösten Polysulfide untersucht werden.
Aufbau der Lithium-Schwefel-Batteriezellen, mit denen die gelösten Polysulfide am Pluspol (Kathode, links) und am Minuspol (Anode, rechts) untersucht wurden: Das Loch im Zellgehäuse gewährleistet die Transmission der Strahlung in und aus der Zelle. Das Loch im Plus- und Minuspol sorgt dafür, dass nur die im Elektrolyten gelösten Polysulfide untersucht werden.
(Bild: Physikalisch-Technische Bundesanstalt (PTB))

Sie bilden sich während des Batteriebetriebs am Pluspol, lösen sich im Elektrolyten und wandern zum Minuspol. Beim Wiederaufladen müssen sie an den Pluspol zurückwandern; aber das klappt nicht vollständig. Die Polysulfide reichern sich mit zunehmender Zyklenzahl am Minuspol an. Am Pluspol steht somit immer weniger Schwefel zur Verfügung, was sich in abnehmender Kapazität niederschlägt.

Neue Strategien im Zelldesign nötig

Mit dem in der PTB entwickelten Verfahren konnte jetzt erstmals molekülspezifisch erfasst werden, bei welchem Lade- und Entladezustand sich wie viele Polysulfide im Elektrolyten an den beiden Polen befinden. Dazu setzten die Wissenschaftler an der Synchrotronstrahlungsquelle „Bessy II“ die Nahkanten-Absorptionsfeinstruktur-Analyse (NEXAFS) sowie referenzprobenfreie Quantifizierung mit Röntgenfluoreszenzanalyse (RFA) für das Element Schwefel ein. Die Verfahren sind sehr genau, rückführbar auf das Internationale Einheitensystem (SI) und kommen ohne Referenzmaterial aus.

Neben dem prozentualen Verlust des kathodischen (also Pluspol-) Aktivmaterials Schwefel für verschiedene Ladezustände konnten die Wissenschaftler die Veränderung der Moleküllänge der Polysulfide bestimmen, die sowohl Löslichkeit als auch Reaktivität maßgeblich beeinflusst. Durch die Untersuchung an beiden Elektrodenseiten konnte der Shuttle-Effekt, also die Bewegung der Polysulfide zwischen den Elektroden, und insbesondere die Akkumulation am Minuspol für fortschreitende Zyklenzahl beobachtet werden. Diese zeitaufgelösten Messungen im laufenden Betrieb der Zelle (Operando-Modus) ermöglichen eine Zuordnung von Veränderungen auf atomarer Ebene zu den elektrischen Eigenschaften der Batterie.

Die Messungen ergaben, dass nicht primär die Bildung der Polysulfide, sondern ihre Bewegung und Ablagerung am Minuspol für den Rückgang der Zellkapazität verantwortlich ist. Dies führt zu neuen Strategien im Zelldesign, zum Beispiel zum Einsatz von polysulfid-undurchlässigen Separatoren.

(ID:47487990)